Retro*: Learning Retrosynthetic Planning with Neural Guided A* Search Binghong Chen, Chengtao Li (Galixir), Hanjun Dai (Google Brain), Le Song

Background

Retrosynthesis Problem

Fundamental problem in chemistry / drug discovery / material science.

Given a target molecule, the task is to figure out **a series of reactions** that lead to the synthesis of the molecule.

Criterion for `better routes` may vary:

- shorter with higher yields.
- more economically efficient.
- more environmentally friendly.
- •

Existing Planners

Monte Carlo Tree Search

- Rollout time-consuming and
- Sparsity in variance estimation.

- Formulation mismatch.
- Hand-designed criterion during search, hard to tune and generalize.

Problem Statement

One-step Retrosynthesis

Input: a target molecule t. **Output**: *k* possible reactions that could lead to the synthesis of t in one step.

Note: In retrosynthesis planning, we assume a good one-step model is given.

 $B(\cdot): \quad t \to \{R_i, \mathcal{S}_i, c(R_i)\}_{i=1}^k$

- B: One-step retrosynthesis model
- : target molecule
- R_i : reaction
- S_i : the set of predicted reactants
- $c(R_i)$: cost of reaction

Retrosynthesis Planning

Input:

- a target molecule t
- a set of building blocks *M* • a one-step retrosynthesis model *B*

Output: a series of possible reactions predicted with *B* that start with molecules in *M* and ultimately lead to synthesis of *t*.

Note: We consider the following criteria: High quality

- Routes should be chemically sound with high probability
- Reactants and reactions should be of low costs
- Efficient
- Shorter routes are preferred

We assume these can be captured by $c(\cdot)$.

AND-OR Tree Representation

Formulation

- Each molecule is encoded as an `OR` node (like m), requiring at least one of children to be solved.
- Each reaction is encoded as an `AND` node (like P), requiring all children to be solved.

Example:

Reaction P: molecule $c + molecule d \rightarrow molecule m$ Reaction Q: molecule $f \rightarrow$ molecule m.

Georgia Institute of Technology

comes with high variance.

Algorithm Framework

Expand the node with an AND-OR stump

(b) Expansion

Algorithm Details Key Idea: Prioritize the synthesis of the molecules in the current *best plan*.

Definition of $V_t(m|T)$: under the current search tree T, the cost of the current best plan containing m for synthesizing target t. Algorithm 1. Dot mo * (+)

AI	gorithm I: Retro (t)	
1 I	nitialize $T = (\mathcal{V}, \mathcal{E})$ with $\mathcal{V} \leftarrow \{t\}, \mathcal{E}$	$\leftarrow \emptyset;$
2 V	while route not found do	
3	$ m_{next} \leftarrow \operatorname{argmax}_{m \in \mathcal{F}(T)} V_t(m);$	(a) Select
4	$\{R_i, \mathcal{S}_i, c(R_i)\}_{i=1}^k \leftarrow B(m_{next});$	(b) Expar
5	for $i \leftarrow 1$ to k do	
6	Add R_i to T under m_{next} ;	
7	for $j \leftarrow 1$ to $ \mathcal{S}_i $ do	
8	Add \mathcal{S}_{ij} to T under R_i ;	Ć
9	Update $V_t(m)$ for m in $\mathcal{F}(T)$;	(c) Updat

10 return route;

Computation of $V_t(m|T)$: using the structure of the AND-OR tree, we can decompose $V_t(m|T)$ into simpler components in a recursive fashion.

(1) Denote $V_m \equiv V_m(m|\emptyset)$, the cost of synthesizing m.

(2) Define reaction number $rn(\cdot T)$: $rn(R T) =$ minimum estimated cost needed for a						
molecule/reaction to happen in current tree.	the $rn(m T) =$					
P P Q D C d e	Example for (2): $rn(t T) = rn(Q $					
	Example for (3): $V_t(f T) = A^*$ algorithm!					
(3) Compute $V_t(m T)$ with $rn($	$(\cdot \mathbf{T}).$ $V_t(m T) =$					

Estimating V_m from Planning Solutions

Dataset: $\mathcal{R}_{train} = \{rt_i = (m_i, v_i, R_i, B(m_i))\}$ each tuple contains target molecule m_i , best synthesis cost v_i , expert reaction R_i , and one-step retrosynthesis candidates $B(m_i)$.

Optimize

Regressio

Consister

 $\mathcal{L}_{con}(rt_i)$

t the most promising frontier node nd the node with one-step model

 m_{next}

te current estimate of V function

 $= c(R) + \sum rn(m|T)$ $m \in ch(R)$ $m \in \mathcal{F}(T)$ V_m , = $\min_{R \in ch(m)} rn(R|T)$, otherwise $= \min(rn(P|T), rn(Q|T))$ $(Q|T) = c(Q) + V_d + V_e$ $= c(P) + c(R) + V_a + V_c + V_f + V_k$ $n! \quad g_t(m|T)$ $h_t(m|T)$ c(r) $r \in \mathcal{A}(m|T) \cap \mathcal{V}^r(T)$ rn(m'|T) $m' \in \mathcal{V}^m(T), pr(m') \in \mathcal{A}(m|T)$

on loss:
$$\mathcal{L}_{reg}(rt_i) = (V_{m_i} - v_i)^2$$

ncy loss:
 $(i, R_j) = \max \left\{ 0, v_i + \epsilon - c(R_j) - \sum_{m' \in S_j} V_{m'} \right\}$

Guarantees on finding the optimal solution

Theorem 1 Assuming V_m or its lowerbound is known for all encountered molecules m, Algorithm 1 is guaranteed to return an optimal solution, if the halting condition is changed to "the total costs of a found route is no larger than $\operatorname{argmin}_{m \in \mathcal{F}(T)} V_t(m)$ ".

Experiments

Figure: Sample solution route produced by Retro^{*}. Expert route requires 3 more steps to synthesize one molecule in the route.

Setting:

To create the retrosynthesis dataset, we use reactions in USPTO to build a knowledge graph from which we extract synthesis routes and split them into train/validation/test set. The available molecule list is obtained from the *eMolecules* database.

One-step model:

We trained a template-based MLP model for one-step retrosynthesis. The model learns from training set reactions and predicts top-50 templates for each product, as well as their likelihood. The templates are then applied to the product to get corresponding reactions.

Retro*	Retro*-0	DFPN-E	MCTS	Greedy DFS
86.84%	79.47%	55.26%	33.68%	22.63%
156.58	208.58	279.67	380.02	388.15
50	52	59	30	11
112	102	25	18	26
	Retro* 86.84% 156.58 50 112	Retro* Retro*-0 86.84% 79.47% 156.58 208.58 50 52 112 102	Retro*Retro*-0DFPN-E86.84%79.47%55.26%156.58208.58279.6750525911210225	Retro*Retro*-0DFPN-EMC1S86.84%79.47%55.26%33.68%156.58208.58279.67380.02505259301121022518

Performance Table: The number of shorter and better routes are obtained from the comparison against the expert routes, in terms of length and total costs.

all algorithms in terms of length/cost.

Baselines:

- MCTS Monte-Carlo Tree Search (Segler et al., 2018).
- Retro*-0 obtained by setting V_m to 0 (ablation study).

Evaluation:

Georgialnstitute of Technology

Proof Similar to A^* admissibility proof. Remark 0 is the lowerbound of V_m for any

molecule m if cost is defined as the negative log-likelihood.

• **Greedy** - greedy Depth First Search: prioritize the reaction with the highest likelihood. • **DFPN-E** - a variant of Proof Number Search (*Kishimoto et al.*, 2019).

• Time: number of calls to the one-step model ($\approx 0.3s$ per call, occupying > 99% time). Solution quality: total costs of reactions / number of reactions (length).

Mailto: binghong@gatech.edu