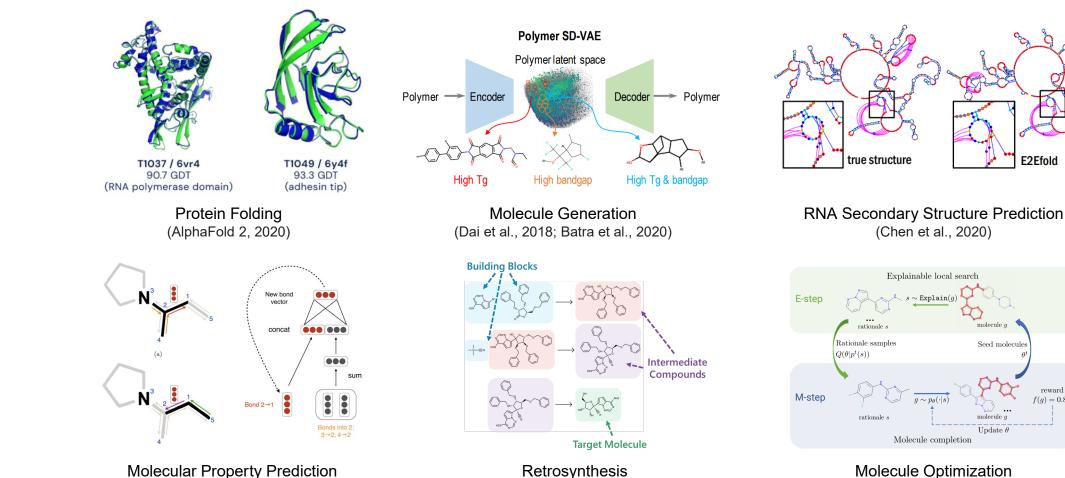


Molecule Optimization by Explainable Evolution

Binghong Chen^{1*}, Tianzhe Wang^{1,5*}, Chengtao Li², Hanjun Dai³, Le Song⁴

¹Georgia Institute of Technology, ²Galixir, ³Google Research, Brain Team, ⁴Mohamed bin Zayed University of AI, ⁵Shanghai Qi Zhi Institute

Machine Learning + Drug Design



Retrosynthesis (Dai et al., 2019; Chen et al., 2020)

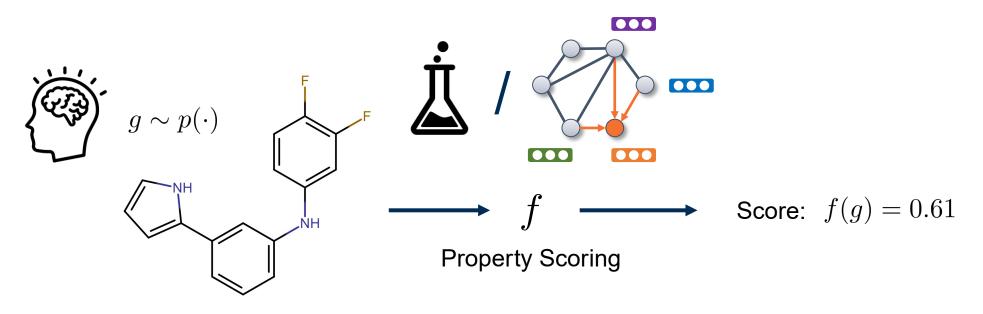
(Dai et al., 2016; Yang et al., 2019)

reward

f(g) = 0.82

Molecule Optimization

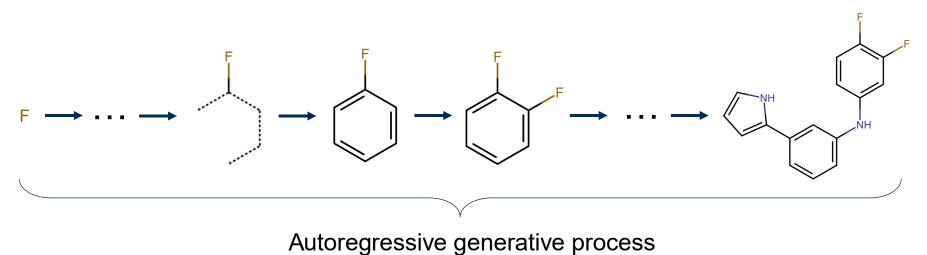
- Design new molecules with desired properties:
 - Property scoring function f (potent, non-toxic, easy to synthesize, ...)
 - Challenges: searching over the vast space of $> 10^{60}$ molecules.



• Task: Learn a molecule generative model $p(\cdot)$ to maximize $\max_{p(\cdot)} \mathbb{E}_{g \sim p(\cdot)}[f(g)]$

RL for Generative Design

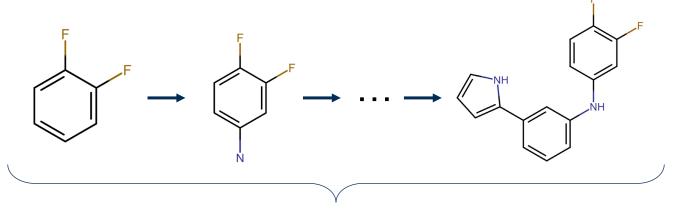
Generation policy p: decide a new atom (and bonds) to add to the current partial molecule.



- Use RL to optimize *p*:
 - Reward r = f(g) only obtained at the end.
 - Sparse reward, long horizon \rightarrow hard to optimize.

Conditioning on Substructures

- Rationales substructures that most contributes to the desired molecular properties.
- Conditioning generation policy p on rationales.

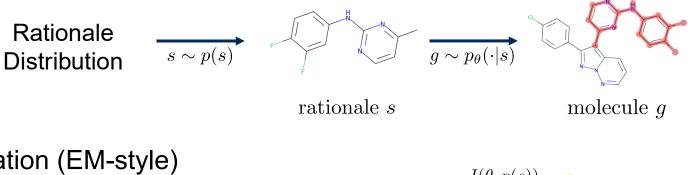


Conditioning autoregressive generative process

- Use RL to optimize *p*:
 - Shorter horizon \rightarrow easier to optimize.
 - Obtaining rationales is hard
 - Designed manually: require human effort.
 - MCTS (Jin et al., 2020): unable to optimize rationales jointly with *p*.

Our Approach: MolEvol

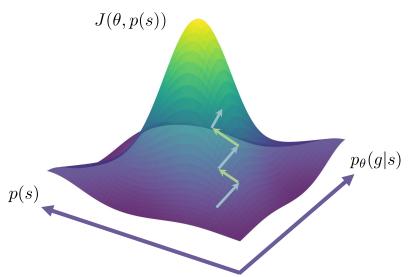
Hierarchical Generative Model



Alternating Optimization (EM-style)

 $J(\theta, p(s)) = \mathbb{E}_{g \sim p_{\theta}(\cdot)}[f(g)] + \lambda \cdot \mathbb{H}[p(s)]$

- E-step
 - Fix $p_{\theta}(g|s)$, update p(s).
- M-step
 - Fix p(s), update $p_{\theta}(g|s)$.

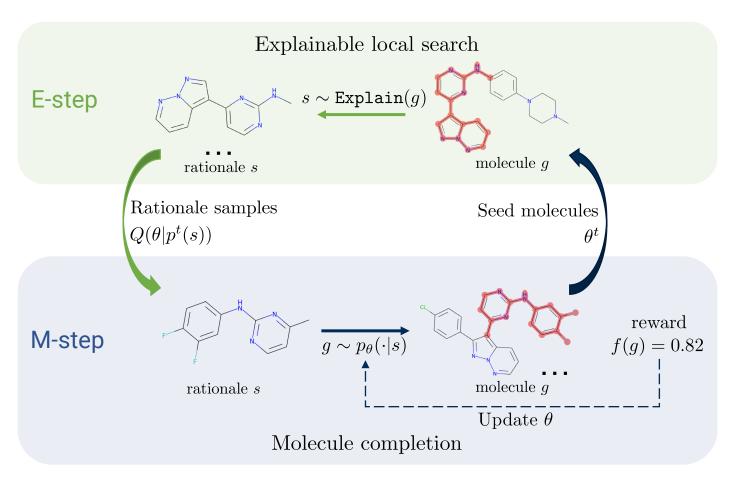


MolEvol: Algorithm Overview

- Init
 - A set of seed molecules are given.
 - Parameter θ^0 .

E-step

- Produce a set of rationales with explainable graph model.
- Optimize p(s) (closed form).
- M-step
 - Produce a set of seed molecules.
 - Optimize $p_{\theta}(g|s)$ (RL).



MolEvol: E-step

- In the *t*-th round, given
 - Parameter θ^{t-1} ,
 - Seed molecules \mathcal{G}^{t-1} ,
- The rationale distribution has a closed form:

$$p^{t}(s) = \frac{1}{Z_{\theta}} \exp\left(\frac{1}{\lambda} \mathbb{E}_{g \sim p_{\theta^{t-1}}(\cdot|s)}[f(g)]\right)$$

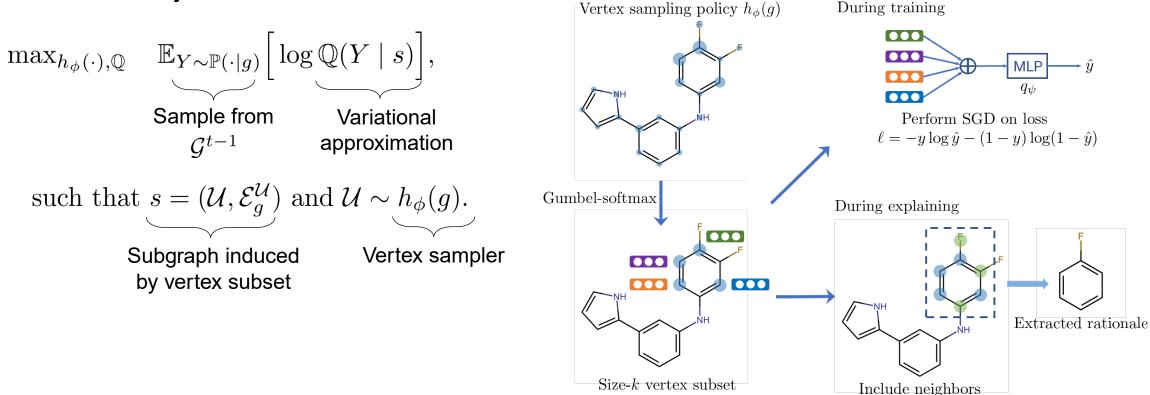
• The support set of $p^t(s)$ is given by the explainable local search:

$$\mathcal{S}^t = igcup_{i=1}^t \left\{ \texttt{Explain}(g) : g \in \mathcal{G}^{i-1}
ight\}$$



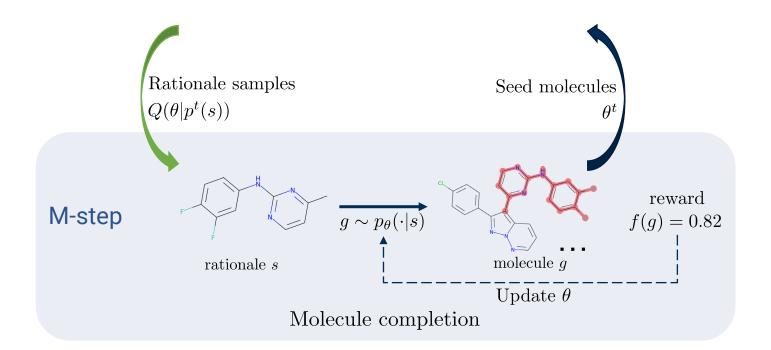
MolEvol: Explainable Graph Model

- To explain $\mathbb{P}(Y = 1|g) \triangleq f(g)$, we maximize the mutual information between Y and rationale s.
- Variational objective:



MolEvol: M-step

- In the *t*-th round, given
 - Distribution $p^t(s)$,
 - Parameter θ^{t-1} ,
- We update θ^t from θ^{t-1} using RL,
 - Init state $s \sim p^t(s)$,
 - Reward r = f(g).



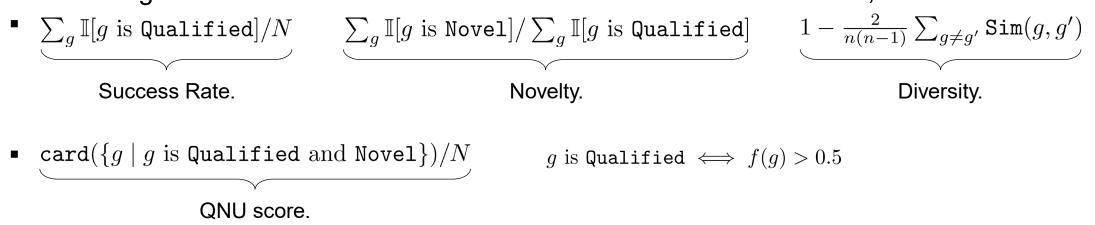
Experiments

- Task: multi-property molecular optimization (Li et al., 2018; Jin et al., 2020)
 - GSK-3β (Li et al., 2018), JNK3 (Li et al., 2018), QED (Bickerton et al., 2012), SA (Ertl et al., 2009)

Potential targets in the treatment of Alzheimer's disease.

Quantitative estimate of drug- Synthetic accessibility. likeness.

- Scoring function: $f(g) = \left[\operatorname{GSK-3\beta}(g) \cdot \operatorname{JNK3}(g) \cdot \operatorname{QED}(g) \cdot \operatorname{SA}(g)\right]^{\frac{1}{4}}$.
- Metrics: we generate N = 20K molecules from each method and measure,

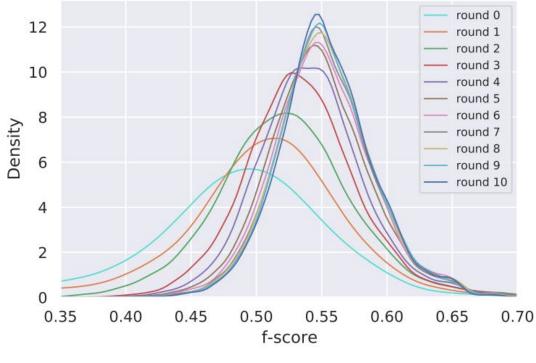


Comparing to Baselines

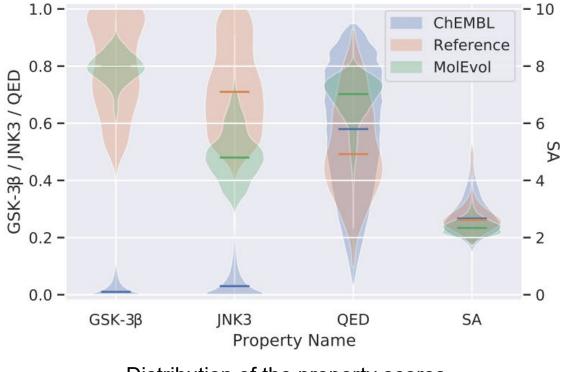
- Baselines:
 - RationaleRL (Jin et al., 2020): MCTS for rationale extraction + RL.
 - REINVENT (Olivecrona et al., 2017): RL on SMILES string.
 - MSO (Winter et al., 2019): Particle Swarm Optimization (PSO) in latent space.
 - GA-D(t) (Nigam et al., 2020): neural network-enhanced genetic algorithm.

Algorithm	MolEvol	[MCTS]	[FixM]	[FixR]	RationaleRL	REINVENT	MSO	GA-D(t)
Success rate	93.0%	77.7%	67.3%	66.3%	61.1%	46.6%	57.7%	62.0%
Novelty	75.7%	72.5%	67.4%	54.6%	57.4%	66.4%	28.6%	19.4%
Diversity	0.681	0.707	0.723	0.727	0.749	0.666	-	-
QNU	52.7%	47.4%	39.3%	28.3%	29.5%	7.4%	16.4%	12.0%

Property Score Distributions

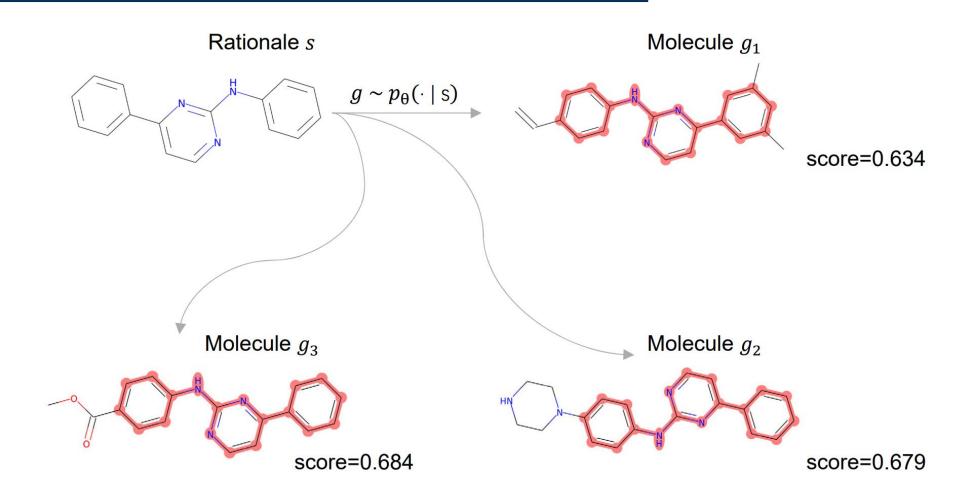


Distribution of f(g) from each iteration.



Distribution of the property scores.

Sample Rationale



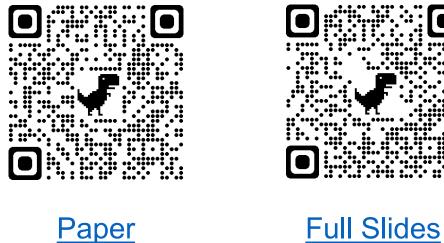
Future Work

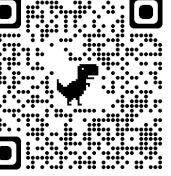
- Generalized methodology
 - 1. First identify useful structural elements,
 - 2. Then improve the design based on these elements.
 - 3. Reiterate the process.

- Discrete structure optimization in other domains
 - Program synthesis
 - AutoML

Thanks for listening!

For more details, please refer to our paper/full slides/poster/repo:





Paper

