ICLR 2020 Spotlight Presentation – Full Version

Learning to Plan in High Dimensions via Neural Exploration-Exploitation Trees

Binghong Chen¹, Bo Dai², Qinjie Lin³, Guo Ye³, Han Liu³, Le Song^{1,4}

¹Georgia Institute of Technology, ²Google Research, Brain Team, ³Northwestern University, ⁴Ant Financial

Task: Robot Arm Fetching

Problem: planning a robot arm to fetch a book on a shelf

- Given (*state_{start}*, *state_{goal}*, *map_{obs}*)
- Find the shortest collision-free path

Traditional planners: based on sampling the state space

- Construct a tree to search for a path
- Use random samples from a uniform distribution to grow the tree

Daily Task: Robot Arm Fetching

Similar problems are solved again and again with (*state_{start}*, *state_{goal}*, *map_{obs}*)~*Dist*

Can we learn from past planning experience to build a smarter sampling-based planner than simply uniform random sampling?

Yes! Learned planner \rightarrow improve sample efficiency \rightarrow solve problems in less time.

Sampling from Uniform v.s. Learned Dist

Uniform Distribution Failed, 500 samples

Learned $q_{\theta}(s|tree, s_{goal}, map_{obs})$ Success, <60 samples

Different sampling distributions for growing a search tree on the same problem.

Neural Exploration-Exploitation Trees (NEXT)

- Learn a search bias from past planning experience and uses it to guide future planning.
- Balance exploration and exploitation to escape local minima.
- Improve itself as it plans.

Learning to Plan by Learning to Sample

- 1. Define a sampling policy $q_{\theta}(s | tree, s_{goal}, map_{obs})$.
- 2. Learn θ from past planning experience.

$$q_{\theta}(s|tree, s_{goal}, map_{obs}):$$
1. $s_{parent} = \operatorname{argmax}_{s \in tree} V_{\theta}(s|s_{goal}, map_{obs});$
2. $s_{new} \sim \pi_{\theta}(\cdot | s_{parent}, s_{goal}, map_{obs}).$

Pure exploitation policy

Learning Sampling Bias by Imitation

- The learned $\pi_{\theta}(\cdot | s_{parent}, s_{goal}, map_{obs})$ is pointing to the goal and avoiding the obstacles.
- The learned $V_{\theta}(s|s_{goal}, map_{obs})$ (heatmap) decreases as it moves away from the goal.

We learn π_{θ} and V_{θ} by imitating the shortest solutions from previous planning problems.

Minimize:

$$\sum_{i=1}^{n} \left(-\sum_{j=1}^{m-1} \log \pi_{\theta}(s_{j+1}|s_{j}) + \sum_{j=1}^{m} (V_{\theta}(s_{j}) - v_{j})^{2}\right)$$

Value Iteration as Inductive Bias for π/V

Intuition: first embedding the state and problem into a discrete latent representation via an attention-based module, then the neuralized value iteration (planning module) is performed to extract features for defining V_{θ} and π_{θ} .

Neural Architecture for π/V

Latent representation of states

Neuralized value iteration

Overall model architecture.

Attention-based State Embedding

Attention module. For illustration purpose, assume workspace is 2d and map shape is 3x3.

Neuralized Value Iteration

Planning module. Inspired by Value Iteration Networks*.

*Tamar, Aviv, et al. "Value iteration networks." Advances in Neural Information Processing Systems. 2016.

11

Escaping the Local Minima

Variance *U* estimates the local density

AlphaGo-Zero-style Learning

Algorithm 3: Meta Self-Improving Learning Initialize dataset \mathcal{D}_0 ; for epoch $n \leftarrow 1$ to N do Sample a planning task U; $\mathcal{T} \leftarrow \mathsf{TSA}(U)$ with $\epsilon \sim \mathcal{U}nif[0,1]$, and $\epsilon \cdot \mathsf{RRT} :: \mathsf{Expand} + (1-\epsilon) \cdot \mathsf{NEXT} :: \mathsf{Expand}$; Postprocessing \mathcal{T} with RRT^{*} :: Postprocess; $\mathcal{D}_n \leftarrow \mathcal{D}_{n-1} \cup \{(\mathcal{T}, U)\};$ for $j \leftarrow 0$ to L do Sample (\mathcal{T}_i, U_i) from \mathcal{D}_n ; Reconstruct optimal path $\{s^i\}_{i=1}^m$ and the cost of paths based on \mathcal{T}_i ; Update parameters $W \leftarrow W - \eta \nabla_W \ell(\tilde{V}^*, \tilde{\pi}^*; \mathcal{T}_j, U_j);$ Anneal $\epsilon = \alpha \epsilon, \alpha \in (0, 1);$ Anneal ϵ Use ϵ -exploration to improve the result

AlphaGo Zero

MCTS as a policy improvement operator.

NEXT (Meta Self-Improving Learning)

Exploration with random sampling as a policy improvement operator!

Experiments

Experiment Results

Learning-based								Non-learning			
Proposed method		Ablation studies			Baselines		Ablation	Baselines			
MSIL		Architecture		UCB	RL	SL	Heuristic	Sampling-based			
NEXT-KS	NEXT-GP	GPPN-KS	GPPN-GP	BFS	Reinforce	CVAE	Dijkstra	RRT*	BIT*		

Search Tree Comparison

Case Study: Robot Arm Fetching

	5s	10s	15s	20s	25s	30s	35s	40s	45s	50s
NEXT	0.579	0.657	0.703	0.709	0.745	0.743	0.746	0.752	0.772	0.763
CVAE	0.354	0.437	0.482	0.509	0.507	0.539	0.553	0.551	0.579	0.580
Reinforce	0.160	0.170	0.200	0.150	0.180	0.190	0.175	0.180	0.225	0.175
BIT*	0.226	0.288	0.320	0.365	0.364	0.429	0.425	0.422	0.443	0.475
RRT*	0.135	0.148	0.144	0.136	0.147	0.159	0.152	0.158	0.157	0.165

Success rates of different planners under varying time limits, the higher the better.

Thanks for listening!

For more details, please refer to our paper/full slides/poster:

Paper **Paper**

Full Slides

Poster